Versatile chipbreaker for highly productive turning of steel
Unique chipbreaker reduces crater wear, providing high productivity and stable, long tool life.
New chipbreaker series "AS & AM" for highly productive turning of steel

Finishing to medium cutting

1. **“Lift-Ridge” shape prevents crater wear**
 - Reduces chip contact and heat generation
 - Suitable for a wide range of cutting conditions
 - Prevents crater wear in a large area of the rake face

2. Specially designed protrusion and ideal chipbreaker width provide excellent chip control

3. Inclination on cutting edge decreases cutting force

Application area

New chipbreaker series "AS & AM" for highly productive turning of steel

Basic chipbreakers

- TH
- TM
- TSF

Selection for high productivity

- AS

Graphs

- Depth of cut vs. Feed
- Feed vs. Depth of cut
Chip control
Stable chip control in a wide range of machining conditions!

Cutting performance

- **High-speed cutting**
 - **High carbon steel** (1045)
 - **Strong resistance to crater wear!**

 ![Graph showing cutting performance](image)

- **High-feed cutting**
 - **High carbon steel** (1045)
 - **Strong resistance to crater wear!**

 ![Graph showing cutting performance](image)

Insert: CNMG 433 AM
Workpiece: Low carbon alloy
Cutting speed: $V_c = 980$ sfm
Machining: External turning
Coolant: Wet

Cutting time (min.)

Max. flank wear width: $V_{B\text{max}}$ (in)

Conventional product
Cutting time (min.): 8 min.
Max. flank wear width: $V_{B\text{max}}$ (in)

Competitor
Cutting time (min.): 8 min.
Max. flank wear width: $V_{B\text{max}}$ (in)

Conventional product
Cutting time (min.): 8 min.
Max. flank wear width: $V_{B\text{max}}$ (in)
Inserts Negative type

Rhombic / 80°

<table>
<thead>
<tr>
<th>Application</th>
<th>Chipbreaker</th>
<th>Appearance (Cross section)</th>
<th>f - ap</th>
<th>Cat. No</th>
<th>Grades</th>
<th>Dimensions (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finishing</td>
<td>AS</td>
<td></td>
<td></td>
<td></td>
<td>CNMG 431 AS</td>
<td>0.500 0.187 0.203 0.016</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CNMG 432 AS</td>
<td>0.500 0.187 0.203 0.031</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CNMG 433 AS</td>
<td>0.500 0.187 0.203 0.047</td>
</tr>
<tr>
<td></td>
<td>AM</td>
<td></td>
<td></td>
<td></td>
<td>CNMG 432 AM</td>
<td>0.500 0.187 0.203 0.031</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CNMG 433 AM</td>
<td>0.500 0.187 0.203 0.047</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CNMG 434 AM</td>
<td>0.500 0.187 0.203 0.062</td>
</tr>
</tbody>
</table>

Rhombic / 55°

<table>
<thead>
<tr>
<th>Application</th>
<th>Chipbreaker</th>
<th>Appearance (Cross section)</th>
<th>f - ap</th>
<th>Cat. No</th>
<th>Grades</th>
<th>Dimensions (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finishing</td>
<td>AS</td>
<td></td>
<td></td>
<td></td>
<td>DNMG 431 AS</td>
<td>0.500 0.187 0.203 0.016</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DNMG 432 AS</td>
<td>0.500 0.187 0.203 0.031</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DNMG 433 AS</td>
<td>0.500 0.187 0.203 0.047</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DNMG 441 AS</td>
<td>0.500 0.250 0.203 0.016</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DNMG 442 AS</td>
<td>0.500 0.250 0.203 0.031</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DNMG 443 AS</td>
<td>0.500 0.250 0.203 0.047</td>
</tr>
<tr>
<td></td>
<td>AM</td>
<td></td>
<td></td>
<td></td>
<td>DNMG 432 AM</td>
<td>0.500 0.187 0.203 0.031</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DNMG 433 AM</td>
<td>0.500 0.187 0.203 0.047</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DNMG 434 AM</td>
<td>0.500 0.187 0.203 0.062</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DNMG 442 AM</td>
<td>0.500 0.250 0.203 0.031</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DNMG 443 AM</td>
<td>0.500 0.250 0.203 0.047</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DNMG 444 AM</td>
<td>0.500 0.250 0.203 0.062</td>
</tr>
</tbody>
</table>

Triangular / 60°

<table>
<thead>
<tr>
<th>Application</th>
<th>Chipbreaker</th>
<th>Appearance (Cross section)</th>
<th>f - ap</th>
<th>Cat. No</th>
<th>Grades</th>
<th>Dimensions (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finishing</td>
<td>AS</td>
<td></td>
<td></td>
<td></td>
<td>TNMG 331 AS</td>
<td>0.375 0.187 0.150 0.016</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TNMG 332 AS</td>
<td>0.375 0.187 0.150 0.031</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TNMG 333 AS</td>
<td>0.375 0.187 0.150 0.047</td>
</tr>
<tr>
<td></td>
<td>AM</td>
<td></td>
<td></td>
<td></td>
<td>TNMG 332 AM</td>
<td>0.375 0.187 0.150 0.031</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TNMG 333 AM</td>
<td>0.375 0.187 0.150 0.047</td>
</tr>
</tbody>
</table>

*Chipbreaker cross sections are marked with an *.

● : Stocked items
Practical examples

<table>
<thead>
<tr>
<th>Workpiece type</th>
<th>Pipe yoke</th>
<th>Hydraulic part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toolholder</td>
<td>ACLNR164-A</td>
<td>ACLNR164-A</td>
</tr>
<tr>
<td>Insert</td>
<td>CNMG 432 AM</td>
<td>CNMG 432 AM</td>
</tr>
<tr>
<td>Grade</td>
<td>T9115</td>
<td>T9125</td>
</tr>
</tbody>
</table>

Cutting conditions

- **Workpiece material**

- **Cutting speed:** V_c (sfm)
 - Pipe yoke: 590
 - Hydraulic part: 1010

- **Feed:** f (ipr)
 - Pipe yoke: 0.014
 - Hydraulic part: 0.018

- **Depth of cut:** a_p (in)
 - Pipe yoke: 0.08
 - Hydraulic part: 0.04 x 9 passes

- **Machining**
 - Pipe yoke: External turning (Continuous cutting)
 - Hydraulic part: External turning (Continuous cutting)

- **Coolant**
 - Pipe yoke: Wet
 - Hydraulic part: Wet

Results

Tool life:

- Pipe yoke: 1.2 times longer
- Hydraulic part: 1.6 times longer

While the competitor was unable to provide good chip control, AM chipbreaker delivered stable chip control even after machining 500 pcs. This was 1.2 times that of the competitor resulting in excellent surface quality.

Compared to the competitor, AM chipbreaker extended tool life by 1.6 times even in high-speed machining due to its strong resistance to crater wear.

*Chipbreaker cross sections are marked with an *.
○ : Stocked items