DLC-coated Grade for Aluminum Alloy Machining

DS1000 Series

Excellent surface roughness for Aluminum!
Outstanding anti-welding properties
for aluminum alloy machining

The combination of the DS1000 coating and the AJ chipbreaker achieve significant improvements in tool life, excellent surface finish and burr prevention.

DS1000 Series

- **DLC – Diamond-Like Carbon**

Problems in machining of aluminum alloys

- Welding of work material or chips on the insert
- Reduced cutting edge sharpness
- Degradation of surface quality and reduced dimensional accuracy
- Reduced tool life

What’s the solution?

- Significant improvement in welding resistance
 - Excellent anti-welding properties achieved by maintaining lubricity between the work material and the surface of the insert throughout the cutting process.
- Improved adhesion between the DLC coating and the substrate
 - Prolongs anti-welding properties
 - Maintains high levels of machined surface quality

AJ-CHIPBREAKER

- Periphery ground, high-precision insert.
- Large rake angle and mirror-like rake surface.
- Outstanding low resistance with superior cutting edge sharpness and good chip control.

Performance comparison

Excellent anti-welding properties

Compared with non-coated products, the DS1200 grade yielded good results in a variety of aluminum alloys.

- Insert: XHGR110200FR-AJ
- Tool: EPH11R010M10.0-2
- Tool diameter: 10 mm
- No. of Inserts: 2 inserts
- Cutting speed: $v_c = 300$ m/min
- Axial depth of cut: $a_p = 2.0$ mm
- Feed per tooth: $f_z = 0.03$ mm/t
- Cutting fluid: Dry cutting

Comparison of welding conditions and surface finish after 11m of machining.

The DS1100 gave good results both in welding conditions and surface roughness. The non-coated product created a cloudy work surface finish due to microscopic chipping on the cutting edge. Competitor's products also left a cloudy surface finish due to the roughness of the film itself.

- Insert: Inserts for the following tool
 - Tool: General purpose cutter for a 45° shoulder
 - Machine: Horizontal machining center (BT40; 22kW; 14,000 min$^{-1}$)
 - Work material: A5052(60HB)
 - Cutting speed: $v_c = 1000$ m/min
 - Feed per tooth: $f_z = 0.15$ mm/t
 - Axial depth of cut: $a_p = 2.0$ mm
 - Radial depth of cut: $a_0 = 60$ mm
 - Cutting fluid: Dry cutting

Work material (cutting length)

- A5052P (207m)
- A7075 (210m)
- AC4B-T6 (70m)

Non-coated product

- DS1000

Non-coated product

- DS1200

Non-coated product

- DS1100

Competitor

- DS1200

Competitor

- DS1100

Inserts

![Fig.1](image1.png) ![Fig.2](image2.png) ![Fig.3](image3.png) ![Fig.4](image4.png) ![Fig.5](image5.png) ![Fig.6](image6.png) ![Fig.7](image7.png)

Right hand (R) shown.

<table>
<thead>
<tr>
<th>Insert Cat. No.</th>
<th>Grade</th>
<th>Dimensions (mm)</th>
<th>Insert shape</th>
<th>Applicable TAC mills</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASGT11T304PDFR-AJ</td>
<td>G</td>
<td>11.6</td>
<td>3.7</td>
<td>0.4</td>
</tr>
<tr>
<td>ASGT11T308PDFR-AJ</td>
<td>G</td>
<td>16.9</td>
<td>5.6</td>
<td>0.4</td>
</tr>
<tr>
<td>ASGT170504PDFR-AJ</td>
<td>G</td>
<td>10</td>
<td>3.5</td>
<td>0.4</td>
</tr>
<tr>
<td>ASGT170508PDFR-AJ</td>
<td>G</td>
<td>16</td>
<td>6</td>
<td>0.8</td>
</tr>
<tr>
<td>GDGT10H3PDFR-AJ</td>
<td>G</td>
<td>12.7</td>
<td>5</td>
<td>0.0</td>
</tr>
<tr>
<td>GDGT17X6PDFR-AJ</td>
<td>G</td>
<td>13.6</td>
<td>4</td>
<td>0.0</td>
</tr>
<tr>
<td>SEGT12X4ZEF-PAJ</td>
<td>G</td>
<td>14.1</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>SWGT13T3AFF-PAJ</td>
<td>G</td>
<td>19.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>WWCW13T3AFFR-WS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Insert Cat. No.</th>
<th>Grade</th>
<th>Dimensions (mm)</th>
<th>Insert shape</th>
<th>Applicable TAC mills</th>
</tr>
</thead>
<tbody>
<tr>
<td>XHGR110200FR-AJ</td>
<td>G</td>
<td>11</td>
<td>2.4</td>
<td>0.0</td>
</tr>
<tr>
<td>XHGR110205FR-AJ</td>
<td>G</td>
<td>13</td>
<td>2.4</td>
<td>1.0</td>
</tr>
<tr>
<td>XHGR110210FR-AJ</td>
<td>G</td>
<td>18</td>
<td>2.8</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Standard cutting conditions

<table>
<thead>
<tr>
<th>Insert Cat. No.</th>
<th>Work material</th>
<th>Cutting speed Vc (m/min)</th>
<th>Feed per tooth fz (mm/t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASGT11T304PDFR-AJ</td>
<td>Aluminum alloys (si < 13%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASGT11T308PDFR-AJ</td>
<td>Aluminum alloys (si > 13%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASGT170504PDFR-AJ</td>
<td>Aluminum alloys (si < 13%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASGT170508PDFR-AJ</td>
<td>Aluminum alloys (si > 13%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDGT10H3PDFR-AJ</td>
<td>Aluminum alloys (si < 13%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDGT17X6PDFR-AJ</td>
<td>Aluminum alloys (si > 13%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEGT12X4ZEF-PAJ</td>
<td>Aluminum alloys (si < 13%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWGT13T3AFF-PAJ</td>
<td>Aluminum alloys (si > 13%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WWCW13T3AFFR-WS</td>
<td>Aluminum alloys (si > 13%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Insert Cat. No.</th>
<th>Work material</th>
<th>Cutting speed Vc (m/min)</th>
<th>Feed per tooth fz (mm/t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XHGR110200FR-AJ</td>
<td>Aluminum alloys (si < 13%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XHGR110205FR-AJ</td>
<td>Aluminum alloys (si > 13%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XHGR110210FR-AJ</td>
<td>Aluminum alloys (si > 13%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XHGR110215FR-AJ</td>
<td>Aluminum alloys (si > 13%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XHGR18T200FR-AJ</td>
<td>Aluminum alloys (si > 13%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XHGR18T205FR-AJ</td>
<td>Aluminum alloys (si > 13%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XHGR18T210FR-AJ</td>
<td>Aluminum alloys (si > 13%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XHGR18T215FR-AJ</td>
<td>Aluminum alloys (si > 13%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XHGR18T220FR-AJ</td>
<td>Aluminum alloys (si > 13%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tungaloy Corporation

Head Office
Solid Square, 580 Horikawa-cho, Saiwai-ku, Kawasaki City, 212-8503 Japan
Phone: +81-44-548-9500 Facsimile: +81-44-548-9540

International Sales & Marketing Department
2-7, Sugasawa-cho, Tsurumi-ku, Yokohama City, 230-0027 Japan
Phone: +81-45-503-9040 Facsimile: +81-45-503-9042
Sales of machining tools

Tungaloy America, Inc.
1226A Michael Drive, Wood Dale, IL.60191, U.S.A.
Phone: +1-630-227-3700 Facsimile: +1-630-227-0690
Sales of machining tools

Tungaloy de Mexico S.A.
C Los Arellano 113, Vista Alegre, Aguascalientes, AGS, Mexico 20290
Phone:+52-449-929-5410 Facsimile:+52-449-929-5411
Sales of machining tools

Tungaloy Europe GmbH
Elisabeth-Selbert-Strasse 3, 40764 Langenfeld, Germany
Phone: +49-2173-90420-0 Facsimile: +49-2173-90420-18
Sales of machining tools

Tungaloy France S.a.r.l.
6 Avenue des Andes, 91952 Courtaboeuf Cedex, France
Phone: +33-1-6486-4300 Facsimile: +33-1-6907-7817
Sales of machining tools

Tungaloy Italia S.p.A.
Via E. Andolfato 10, 20126 Milano, Italy
Phone: +39-02-252012-1 Facsimile: +39-02-252012-65
Sales of machining tools

Tungaloy Central Europe s.r.o
4D Center Building B10F Kodanska 46 10100 Prauge 10 Czech Republic
Phone: +420-272652218 Facsimile: +420-234064270
Sales of machining tools

Tungaloy Cutting Tool (Shanghai) Co.,Ltd.
United Plaza 1505, 1468 Nan Jing Road West, Shanghai 200040, China
Phone: +86-21-714-0512 Facsimile: +86-21-6289-1302
Sales of machining tools

Tungaloy Cutting Tool (Thailand) Co.,Ltd.
11th Floor, Sorachai Bldg. 23/7, Soi Sukhumvit 63,Klongtonnue, Wattana, Bangkok 10110, Thailand
Phone: +66-2-714-3130 Facsimile: +66-2-714-3134
Sales of machining tools

Tungaloy Singapore(Pte.),Ltd.
50 Kallang Avenue #06-03 Noel Corporate Building, Singapore 339505
Phone:+65-6391-1833 Facsimile:+65-6299-4557
Sales of machining tools

Distributed by:

ISO 9001 certified
ISO 14001 certified

2008.02(F)